3,871 research outputs found

    Electron paramagnetic resonance studies of slowly tumbling vanadyl spin probes in nematic liquid crystals

    Get PDF
    An analysis of EPR line shapes by the method of Polnaszek, Bruno, and Freed is made for slowly tumbling vanadyl spin probes in viscous nematic liquid crystals. The use of typical vanadyl complexes as spin probes for nematic liquid crystals is shown to simplify the theoretical analysis and the subsequent interpretation. Rotational correlation times tau and orientational ordering parameters S sub Z where slow tumbling effects are expected to be observed in vanadyl EPR spectra are indicated in a plot. Analysis of the inertial effects on the probe reorientation, which are induced by slowly fluctuating torque components of the local solvent structure, yield quantitative values for tau and S sub Z. The weakly ordered probe VOAA is in the slow tumbling region and displays these inertial effects throughout the nematic range of BEPC and Phase V. VOAA exhibits different reorientation behavior near the isotropic-nematic transition temperature than that displayed far below this transition temperature

    ESR studies of the slow tumbling of vanadyl spin probes in nematic liquid crystals

    Get PDF
    ESR line shapes that are appropriate for slowly tumbling vanadyl spin probes in viscous nematic liquid crystals were calculated by the stochastic Liouville method. Because of the symmetry possessed by vanadyl, the analysis and interpretation of these line shapes was simplified considerably. Spectral line shapes agreed well with experimental spectra of VOAcAc in the nematic liquid crystal Phase V and BEPC. Deviations from Brownian rotational diffusion were noted. A slowly fluctuating torque analysis yielded good agreement with the experimental spectra

    Basic Taxonomic Structures and Levels of Abstraction

    Get PDF
    Taxonomic knowledge structures are often used to organize information. We compare basic taxonomic structures in four areas: thesaurus construction in information retrieval, semantic data models in database management systems, semantic networks in artificial intelligence, and mental structures in cognitive psychology. We then discuss levels of abstraction, in panicular the importance of intermediate levels. In mental structures these turn out to be basic levels that are more important cognitively than higher or lower levels. We explore the role of abstraction levels in other taxonomic structures and suggest possible future research in this area

    Working group report on beam plasmas, electronic propulsion, and active experiments using beams

    Get PDF
    The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields

    Scheduling MapReduce Jobs under Multi-Round Precedences

    Full text link
    We consider non-preemptive scheduling of MapReduce jobs with multiple tasks in the practical scenario where each job requires several map-reduce rounds. We seek to minimize the average weighted completion time and consider scheduling on identical and unrelated parallel processors. For identical processors, we present LP-based O(1)-approximation algorithms. For unrelated processors, the approximation ratio naturally depends on the maximum number of rounds of any job. Since the number of rounds per job in typical MapReduce algorithms is a small constant, our scheduling algorithms achieve a small approximation ratio in practice. For the single-round case, we substantially improve on previously best known approximation guarantees for both identical and unrelated processors. Moreover, we conduct an experimental analysis and compare the performance of our algorithms against a fast heuristic and a lower bound on the optimal solution, thus demonstrating their promising practical performance

    Quantum-jump vs stochastic Schrödinger dynamics for Gaussian states with quadratic Hamiltonians and linear Lindbladians

    Get PDF
    The dynamics of Gaussian states for open quantum systems described by Lindblad equations can be solved analytically for systems with quadratic Hamiltonians and linear Lindbladians, showing the familiar phenomena of dissipation and decoherence. It is well known that the Lindblad dynamics can be expressed as an ensemble average over stochastic pure-state dynamics, which can be interpreted as individual experimental implementations, where the form of the stochastic dynamics depends on the measurement setup. Here we consider quantum-jump and stochastic Schrödinger dynamics for initially Gaussian states. While both unravellings converge to the same Lindblad dynamics when averaged, the individual dynamics can differ qualitatively. For the stochastic Schrödinger equation, Gaussian states remain Gaussian during the evolution, with stochastic differential equations governing the evolution of the phase-space centre and a deterministic evolution of the covariance matrix. In contrast to this, individual pure-state dynamics arising from the quantum-jump evolution do not remain Gaussian in general. Applying results developed in the non-Hermitian context for Hagedorn wavepackets, we formulate a method to generate quantum-jump trajectories that is described entirely in terms of the evolution of an underlying Gaussian state. To illustrate the behaviours of the different unravellings in comparison to the Lindblad dynamics, we consider two examples in detail, which can be largely treated analytically, a harmonic oscillator subject to position measurement and a damped harmonic oscillator. In both cases, we highlight the differences as well as the similarities of the stochastic Schrödinger and the quantum-jump dynamics

    spacodiR: structuring of phylogenetic diversity in ecological communities

    Get PDF
    Motivation: spacodiR is a cross-platform package, written for the R environment, for studying partitioning of diversity among natural communities in space and time. Complementing and extending existing software, spacodiR allows for hypothesis testing and parameter estimation in studying spatial structuring of species-, phylogenetic- and trait diversities. Availability: Integrated with other software in the R environment and with well documented and demonstrated functions, spacodiR is an open-source package and available at http://cran.r-project.org. Contact: [email protected]; [email protected]
    • …
    corecore